USE OF OXO-METALLIC DERIVATIVES IN ISOMERISATION

REACTIONS OF UNSATURATED ALCOHOLS

P. CHABARDES, E. KUNTZ and J. VARAGNAT Centre de Recherches des Carrières, Rhone-Poulenc Industries, 69190-Saint-Fons, France

(Received in the UK 6 January 1977; Accepted for publication 24 January 1977)

Abstract—The isomerisation of α -acetylenic alcohols to ethylenic carbonyl derivatives and the isomerisation of α -ethylenic alcohols to the corresponding allyl alcohols may be effected in good yields in a single step using oxometallic derivatives. The variable esters are particularly efficient. Mechanistic explanations are given.

The problems of the isomerisation of α -acetylenic alcohols to ethylenic carbonyl derivatives and of the rearrangement of α -ethylenic alcohols to corresponding allylalcohols by a more economical and simpler catalytic method than those hitherto known presented themselves to us in 1967. The isomerisation of acetylenic alcohols in a single stage had only found solutions in isolated cases. Isomerisations in several stages, using various intermediates derived from the alcohols, had also been carried out, amongst which may be mentioned those leading to allene acetates, namely the reaction of 3chloro-3-methyl-butyne with silver acetate in acetic acid, giving 2-acetoxy-3-methyl-buta-1,2-diene² and isomerisation of acetates of acetylenic tertiary alcohols, by pyrolysis¹ or by heating in acetic acid in the presence of silver salts.4 (For a review of these isomerisation reactions, see Ref. [5]).

The isomerisation of ethylenic alcohols by means of acid catalysts which bring about the allyl rearrangement was known.⁶ This type of reaction, which sometimes lacks selectivity, was also capable of being carried out in several stages, such as acetylation, isomerisation and saponification. (For this reason, the conversion of nerolidol to farnesol was carried out with mediocre yields⁷). It was thus of interest to investigate isomerisation catalysts which do not exhibit the disadvantages described above.

Isomerisation of α -ethylenic and α -acetylenic alcohols by means of oxo-metallic derivatives

In the Carroll rearrangement of acetylenic esters (a), the Claisen rearrangement of enol ethers (b) and the rearrangement of esters of acetylenic tertiary alcohols (c), [3,3] sigmatropic reactions occur with scission of the C-O bond and formation of a C-C or C-O bond. The reaction (c) only takes place satisfactorily in the presence of silver catalysts. 44 We considered it probable that an ester of an inorganic acid, the metal of which would at the same time play the role of a catalyst, could have an advantageous effect on the reaction. We have used certain oxo-metallic derivatives (Table 1) to check this hypothesis.

These first results have led to several patents, ⁸⁹ and to the construction, in 1972, ¹⁹ of an industrial unit for the isomerisation of dehydrolinalol to citral. Since the appearance of our patents, several groups have investigated the isomerisation of acetylenic alcohols in the presence of derivatives of vanadium^{11,12} or other metals, ¹² and have similarly studied ethylenic alcohols. ¹¹

Vanadate esters as catalysts for the isomerisation of α -ethylenic and α -acetylenic alcohols

Although derivatives of other metals, as molybdenum or rhenium gave interesting results the purpose of this communication is to report isomerisations by vanadate esters.

Preparation of the vanadates O = V (OR). Equations (1)-(5), in which RO and R'O can be either an alkoxy or a siloxy group, show some ways in which these vanadates may be prepared. Thus, alcohols and silanols are equivalent from the point of view of the transesterification, this is the key of the catalytic action of the vanadates in this isomerisation reaction, as we shall see later.

- (1) $Ag_3VO_4 + 3RI \rightarrow OV(OR)_3 + 3AgI$
- (2) $V_2O_3 + 6 ROH \rightarrow 2 OV (OR)_3 + 3 H_2O$
- (3) OVCl₃ + 3ROH + 3NH₃ \rightarrow OV (OR)₅ + 3NH₄Cl
- (4) OV(OR)₃ + 3R'OH≠OV(OR')₃ + 3ROH
- (5) OV $(OR)_1 + 3CH_1COOR' \rightleftharpoons OV (OR')_1 + 3CH_1COOR$.

^{*}Schmid et al.16 have recently proposed the formation of a π -complex between the silver and either the triple bond of the propargyl ester starting material or the carbon-carbon double bond of the allene ester, thus allowing the [3,3] sigmatropic reaction to take place.

Table 1. Isomensation of a citytlenic and a accitylence alcohols by means of oxo-metalise derivatives

NH,VD,	•	Isomers obtained	steals ste	moly of catalyst moly of unvaturated alcohol	Solvent 	- I	uration	Yicld	Degree of conversion
NH,VO,	' / \	. 5							
V.O. alumna	7	_{_	NH,VO,	, 01 + 9 9	Ð	160	M min	; ;	3
V.O. alamma II. 10 "** 0" 140" 2h III. 2h Vanady access Vanady		:		. 01 - 99	Paraffin	18	30 mm	9.	Ä
Inv Ferabuty Inv Ferabuty Inv Ferabuty Inv Ferabuty Inv Ferabuty Inv Ferabuty Inv		×	V.O. alumina	* 2 :	5 -	140	£	;	3
Academistration Academistr		:	tris tetrabutyl						
Vanadyl acciate (88×10° 0° 1"0° 35 min accionate (88×10° 0° 1"0° 35 min accionate (14×10° 0° 1"0° 2° 15 min hydrobenzoale (88×10° 0° 1"0° 2° 15 min eycloberanol° (80° 2° 10° 0° 1"0° 15 min acycloberanol° (82×10° 0° 1"0° 15 min acycloberanol° (82×10° 0° 1"0° 10° 10° 10° 10° 10° 10° 10° 10° 10° 1			decay anadate	68×10 *	0	3	Ę	ě	8.
Vanadyl beta			Vanadyl acetyl-		ć	*	;	,	:
Vanadyl beka		:	accionale Vanadyl acciate	01 • • • •		<u>\$</u>		; ;	; <u>.</u>
15 min 1			Vanadal bexa	. 01 4%.	=	35	1. mm >1	7	\$;
Second			hydrobenzoate				1. mm		
Mot. H ₂ δ0.0. MoO ₁ • cthylene 94 • 10 ° 0 150° 10 mm cyclohexanol ° ° ° • 10 ° 0 150° 10 mm cyclohexanol ° ° ° • 10 ° 0 150° 10 mm cyclohexanol ° ° ° ° • 10 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		:	(NH, LMO.O., 4 H.O.	4 31 10 4	Paraffin	1.	15	ş	20
SH, RCO, St.	Ì	•	MolC.H.,O.	· ·		:		ļ.	į
SHACO, CT 10 0 1°0 10 min SHACO, CACODE anol" 1° 10 0 1°0 10 min SCHAO, CACODE anol" 1° 10 0 1°0 1°0 1°0 SHAO, CACODE anol" 1° 10 0 1°0 1°0 1°0 SCHAO, CACODE anol" 1° 10 0 1°0 1°0 1°0 SCHAO, CACODE anol" 1° 10 0 1°0 1°0 1°0 SCHAO, CACODE anol" 1° 10 0 1°0 1°0 SCHAO, CACODE anol" 1° 10 0 1°0 1°0 SCHAO, CACODE anol" 1° 10 1°0 1°0 SCHAO, CACODE anol" 1° 10 1°0 1°0 SCHAO, CACODE anol" 1° 10 1°0 1°0 SCHAO, CACODE anol 1°0 1°0 SCHAO, CACODE anol 1°0 1°0 1°0 SCHAO, CACODE anol 1°0 1°0			ghooth current	* 01 * * *	0	3	£:	÷	\$
SH,VO,		÷	NEW Cycloheranof"	. 01 *. ,	0	70.	10 mm	į	ಸ
(NH, Mo.O), 4 H, O 2 × 10 ° 0 150° 3 h (NH, Mo.O), 4 H, O 2 × 10 ° 0 150° 0 min (NH, Mo.O), 7 H, O 8 × 10 ° 0 160° 30 min (NH, Mo.O), 4 H, O 3 × 10 ° 0 200° 3 h (NH, Mo.O), 4 H, O 3 × 10 ° 0 200° 3 h (NH, Mo.O), 4 H, O 3 × 10 ° 0 130° 3 h (NH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO, (4 × 10 ° 0 130° 3 min (MH, VO) (MH, VO) (MH, VO) (MH, VO) (MH, VO)	⊸ "	/ / p=4							
3×10° 0 14f 30 min 3 h 3×10° 0 230° 3 h 3×10° 0 330° 3 h 3×10° 0 130° 40 min 44×10° 0 130° 40 min 50 min		,		; UF • 11 I	0	3	#:	æ	×
3×10° 0 144° 30 min 3×10° 0 200° 8h 3×10° 0 134° 40 min 54×10° 0 134° 20 min		;	Continuo Con	, 01 *>;	0	3	9 9		×
3×10 0 200° 3h satisfy 3×10 0 100° 3h sanor 3h sanor 40 min sanor 50 min somin	1	, <u>, </u>	(NH _{21,0} W ₂ ,O _{4,7} H ₂ O _{3,4} + cyclohexanof ²³	* 01 * *	0	*	M Own		亡
2 h 3×10	}		OWIOSIALL	3×10 v	o	8	÷.		ş
44×10 0 140* 2h	\sqrt{X}		(NH4kMo.Os.4HgO) + cyclobexanof	, 01 × t	ø	ž	4.5 Film G		న
	~(\$ \	NH,VO,		0	75	4.5 mm 05	Ę.	۶.

See table 3 for footnote.

Study of the isomerisation of dehydrolinalol to citral. Dehydrolinalyl orthovanadate was synthesised from ethyl orthovanadate and three equivalents of the dehydrolinalol, the equilibrium being shifted by removal of the ethanol formed (eqn 4). This orthovanadate decomposes on heating, giving a little citral and polyvanadates (by a mechanism given below). Its hydrolysis gives back dehydrolinalol. When heated in the presence of dehydrolinalyl orthovanadate, dehydrolinalol gives citral (60%) (Table 2), in accordance with the anticipated mechanism. It is thus possible to avoid the preparation of dehydrolinalyl orthovanadate for the isomerisation of dehydrolinalol by using vanadium derivatives such as alkyl vanadates, silanyl vanadates, polysiloxy vanadates and the like, which can produce the vanadate catalyst in situ by exchange.

Triethanolamine orthovanadate requires a special comment. This is one of the cyclic inorganic esters of the triethanolamines referred to as "atranes" by Voronkov et al." Triethanolamine orthovanadate is an oxovanadatrane and possesses a nitrogen-vanadium coordination bond. It is a crystalline product sparingly solu-

ble in dehydrolinalol at ambient temperature, and giving a homogeneous solution under the isomerisation conditions. At the end of the operation, the catalyst crystallises out on simple cooling and can be recovered by filtration.

Isomerisation of various unsaturated alcohols. Tables 2 and 3 give some results which we obtained in isomerisations of α -acetylenic or α -ethylenic alcohols by means of vanadate esters.

Mechanism of the reaction

 α -Acetylenic alcohols. From a vanadate OV(OR), the discussion will be confined to a radical RO to facilitate writing (ROH represents an alcohol or an equivalent, for example a silanol, and R₃ can be H).

First stage: trans-esterification (1)

Second stage: [3,3] sigmatropic rearrangement (2)

Third stage: trans-esterification (3 or 3)

$$\begin{array}{c|c}
R_1 & C_1 & C_2 & C_3 & C_4 & C_5 & C_6 & C_6 & C_6 & C_7 & C_$$

Table 2. Vanadate esters as catalysts for the isomerisation of a acetylenic alcohols

Akoholo Lomers Caabysts make of grandled Solvent T. Duration Yield Conversion			ו שמוכ די א שוושמשים	TAUC L. Y MIGRATC CSICIS AS CARANJSIS IN THE INCLUSION OF IL MEET/FILE MEETINGS.	marina a acriment					
		Akohol starting material	Isomers obtained	Catalysts	moly of catalyst moly of unsaturated alcohol	Solvent	۴	Duration	Yield	Degree of conversion
	17	X	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	n-propyl	, 01×5	0	130°	÷	77.	R
Trethanolamine 1970		=-		orthovanadate						
Trethanolamine 39 × 10 0 160° 35 min 757"	∞	:	:	Isobutyl	2.2 × 10 ²	0	38	30 min	67.	ដ
Cyclobexyl 8 × 10 0 125 2.h 80°	6	:	:	orthovanadate Triethanolamine	3.9×10 1	c	140	35 min	75 763	
			:	orthovanadate		ì	3			i
	2	:	:	Cyclohexyl	8×10,	0	12%	2 h	3	=
Tetrahydrolinalyl 39 × 10 0 160° 30 min 77°°	77	:	ı		2.1 × 10 ²	Paraffin	125°	4	Î.	7
	23	:	:	Tetrahydrolinalyl	3.9 × 10°	- - - -	160°	30 min	t.	21
	ş			orthovanadate			;		į	;
Dehydrolinaly 28 × 10 1 0 140° 1 h 60°	23	:	:	:	. 01×1.7	Paraffin oil ^a	3	S min	669	ສ
Signature Sign	75	:	:	Dehydrolinalyl	2.8 × 10 ²	0	140°	=	î,09	33
CHO orthovanadate Trimethylsily! Triphenylsily! Tetrahydrolinaly! OH 160° 35 min 59" Orthovanadate Triphenylsily! Tetrahydrolinaly! OH 150° 25 h" 88" Triphenylsily! OH 20 150° 2 h" 88" Triphenylsily! OH 21 10 1 10 1 10 1 10 1 10 1 10 1 10 1	55	:	:	ortnovanadate 3 S.dimethel/bexel.3	38×10 v	0	Ž	30)(J)(F)	"
Trinethylsilyl 1.4×10 '0 160° 35 min 59". Triphenylsilyl 1.4×10 '0 160° 35 min 54". Tetrahydrolinalyl 4.1×10 '0 150° 2 h" 88". Triphenylsilyl 6.2×10 '0 150° 30 min 37". Tricthanolamine 5.2×10 '0 160° 2 h" 88". Tricthanolamine 5.2×10 '0 150° 2 h" 88". Tricthanolamine 7.7×10 '0 160° 2 h 72".	i			orthovanadate		,	3		2	ì
Triphenylsilyl orthovanadate 4.1×10 ' 0 160° 35 min 54" orthovanadate 4.1×10 ' 0 150° 25" smin 54" orthovanadate 8.4×10 ' 0 150° 25" smin 54" smin 54" orthovanadate 6.2×10 ' 0 150° 25" followed by 30 min 37" followed by 30 min 37" orthovanadate 3.7×10 ' 0 160° 2 h 72"	36	:	:	Trimethylsilyl	1.4 × 10 ³	0	99	35 min	¿65.	33
OH CHO 35 min 54" orthovanadate 4.1 × 10 1 0 160° 35 min 54" orthovanadate 8.4 × 10 1 0 150° 2 h" 88" Triphenylsilyl 6.2 × 10 2 0il" 150° 30 min 37" followed by 30 min 37" orthovanadate 8.2 × 10 0 0il" 150° 30 min 37" orthovanadate 8.2 × 10 0 0il" 150° 20 min 70° orthovanadate 8.7 × 10 0 160° 2 h 72"	7.	:	:	orthovanadate Triotenyleilyl						
CHO Tetrahydrolinaly! 8.4×10 1 0 150° 2 h" 86° 3 h	i	;	:	orthovanadate	4.1 × 10 *	0	160°	35 min	× (*)	8
OH	3	-	9	Tetrahudentel						
Triphenylsilyl Paraffin 2 h orthovanadate 6.2 × 10°7 oij" 150° 30 min 37°° followed by 30 min "" Triethanolamine 3.7 × 10° 0 160° 2 h 72°° orthovanadate 3.7 × 10° 0 160° 2 h 72°°	9	/// -8		orthovanadate	8.4×10 *	0	150	2 150	900	23
OH Tricthanolamine OH Tricthanolamine 3.7 × 10 ° oil" 150° 30 min 37° followed by 30 min" Tricthanolamine 3.7 × 10 ° 0 160° 2 h 72° oil"	ድ	:	:	Triphenylsilyl		Paraffin		2 h		
OH Tricthanolamine 3.7 × 10 0 160° 2 h 72"				orthovanadate	6.2 × 10°3	oil	<u>\$</u>	30 min	37**	3 6
Triethanolamine 3.7 × 10 0 160° 2 h 72°°, orthovanadate 3.7 × 10 0 160° 2 h 72°°,							د	rollowed y 30 min'"		
Tricthanolamine 3.7 × 10 ' 0 160° 2 h 72"		₹-	£_,							
	<u>ş</u>	} _	o _H o _L	Triethanolamine	3.7 × 10.	c	160	4	13.61	*
		₹ }	≼		2	>	3	:	!	ì

38	19	4	9	37
_{(4,06}	13 -	63(c)	70,,	4)98
2 hr 30 min	2 h 30 min	1. No. min. 30. min.	6 h	I.h 30 min
209	200	5 0 <u>5</u>	145°	\$
0	Paraffin oil"	0	Paraffin oit"	0
4.6 × 10	4.6 × 10 ²	3.8×10 ³	8.8 × 10	3.8 × 10 ³
	CHO Cycloheayl orthovanadate	Cyclohexyl orthovanadate + cyclohexanol**	Cyclohexyl orthovanadate	Triethanolamine orthovanadate
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			Q+50
æ	33	æ	*	35

See Table 3 for footnotes

Table 3. Vanadate esters as catalysts for the isometivation of a ethylenic alcohols

" Chromatographic determination.

" Chemical determination.

"Estimation by nuclear magnetic resonance.

mols of cyclobexanol/mols of unsaturated alcohol $7.7 \times 10^{\circ}$ mols of cyclobexanol/mols of unsaturated alcohol = 1.5 × 10 mols of cyclobexanol/mols of unsaturated alcohol 4.4 × 10 .

* Weight relationships solvent/unsaturated alcohol 1.

*** Weight relationships solvent/unsaturated alcohol 2.

*** Weight relationships solvent/unsaturated alcohol 7.3.

*** Weight relationships solvent/unsaturated alcohol - 4.

*** Alculated on V.O.,

*** Operation carried out in an autoclave under autogenous pressure.

*** Operation carried out in a flash, the alcohol to be isomerised being run in slowly (2.5 h).

*** mols of tertiary butanol/mols of unsaturated alcohol - 1.5 × 10 ...

The vanadate (I) capable of producing the desired cyclic transfer is regenerated, and is therefore a catalyst; it can be recycled without losing activity or selectivity.

Influence of the presence of R'OH in the mixture (R'O = alkoxy or siloxy). In 3 or 3', R'OH competes, in the trans-esterification, with the acetylenic alcohol to be isomerised.

(R' may be identical to R),

This ensures the compound does not remain too long in form (II) which is responsible, as the concentration of carbonyl product increases, for the formation of non-volatile products, for example by the following mechanism.

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_5

This type of side reaction can also be minimised in other ways. One can for instance use incomplete conversion; in this way, as the carbonyl product formed is present in a lower concentration than its acetylenic isomer, reactions 3 or 3' predominate over 5. Everything occurs as if the alcohol to be isomerised served as the solvent. One can also use a solvent which is inert towards the reactants.

It is possible to avoid another side reaction: the condensation of the vanadates with one another, leading to polyvanadates and to dehydration products of the alcohols (for example dehydromyrcen from dehydrolinalol) in accordance with an initial mechanism such as.

 α -Ethylenic alcohols. If the triple bond is replaced by a double bond in the rearrangement mechanisms given above, the following equilibria result in a similar manner.

polyvanadates

$$R_1$$
 R_2
 R_3
 R_2
 R_3
 R_4
 R_3
 R_4
 R_4
 R_5
 R_4
 R_5
 R_5
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8
 R_9
 R_9

The explanation of certain side reactions in the case of the isomerisation of dehydrolinalol to citral is to be found within this framework.

It is known that dehydrolinalol can isomerise thermally by a [3,2] sigmatropic reaction, to give 1-hydroxy-1methyl-2-methylene-3-isopropenyl-cyclopentane (see. e.g. Ref. [16]). We have shown that the product contains two isomers, the isopropenyl and hydroxyl groups being in the cis-position or trans-position relative to the cyclopentane. These epimers cannot be mutually equilibrated directly. On the other hand, the treatment of one or the other of these products with an oxo-metallic derivative, such as a vanadate, gives an intermediate ester which can, after [3,3] sigmatropic rearrangement and liberation of the alcohol group, lead to its primary allyl isomer. Conversely, the primary alcohol will give an ester, the rearrangement of which can give the mixture of the cis and trans tertiary alcohols. Ultimately, three isomers can thus be present and mutually equilibrated.

CONCLUSION

The use of oxo-metallic derivatives, especially vanadates, in isomerisation reactions of unsaturated alcohols, opened a new and faster way in the synthesis of unsaturated carbonyl derivatives and of allylic alcohols. The first industrial application of these findings is the synthesis of citral from dehydrolinalol.

EXPERIMENTAL

The vapour phase chromatography was carried out on Hewlett-Packard models F & M 720 or 5750, with a Hewlett-Packard 3380 integrator. The IR spectra were recorded on a Perkin-Elmer 237 spectrometer, using the material as a film or in Nujol. The NMR spectra were recorded on Varian T 60 or HA 100 spectrometers using TMS as an internal standard and CCl_a as solvent.

Preparation of the ranadates. This is carried out in accordance with the conventional methods in the literature, namely reaction of the alcohols with V_2O_3 (in the case of the alcohols of low b.p.) and with NH_4VO_3 (in the case of the alcohols of higher b.p.), and transesterification reactions.

Another side reaction consists of the oxidation of the alcohol to the corresponding aldehyde (the reaction scheme used in Ref. [17]). This reaction takes place, with a change in the oxidation level of the metal, in accordance with the following mechanism.

Similar cyclic mechanism is proposed^{1a} for oxidation of alcohols through their chromic esters.

Determination of the carbonyl products by oximation. 6-7 mmols of carbonyl product are dissolved in 80 ml of 95° strength alcohol and 20 ml of water; the pH is brought to 3.5. 20 ml of a solution, of pH 3.5, of hydroxylamine hydrochloride (50 g in 167 ml of water and 800 ml of 95° strength alcohol) are added. The reaction is allowed to take place whilst stirring (20 min in the case of citral); the mixture is returned to pH 3.5 by means of 0.5 N sodium hydroxide solution (the pH being measured).

Determination of the monosubstituted acetylenic derivatives with silver nitrate (according to S. Siggia¹⁹). The nitric acid resulting from the formation of silver acetylide is determined by potentiometric titration.

Determination of dehydrolinalol and of citral by vapour phase chromatography. F & M 720: column 1.8 m×1/4 ft; 10% Apiezon on Embacel; injector and detector at 280°, and oven at 120° for dehydrolinalol and 150° for citral. Helium flow 60 ml/min F & M 5750; column 3 m×1/8 ft; 15% UCON 1.B 550 X on Chromosorb W 60/80 mesh. Injector at 240°, detector at 280°, oven raised from 150° to 180° at 1°/min. Helium flow 1.8 l/h. Internal standard methylheptenone. These last-mentioned conditions make it possible to separate the following: methylheptenone. 1-hydroxy-1-methyl-2methylene-3-isopropenyl-cyclopentane (cis isomer, followed by trans isomer), dehydrolinalol, 1-isopropenyl-2-methyl-3-methyl-cyclopent-2-ene, neral, 1-isopropenyl-2-methylol-3-methyl-cyclopent-2-ene and geranial (increasing retention times)

Isomerisation experiment in the absence of a solvant. 150 g of dehydrolinalol and 0.8 g of triethanolamine orthovanadate are introduced, under an inert atmosphere, into a 500 ml flask equipped with a stirrer, a thermometer, a nitrogen inlet and a short Vigreux column. The mixture is heated to 160°C over the course of 10 min whilst stirring, and this temperature is maintained for 35 min. The homogeneous yellow reaction mixture is cooled to 60° and is rapidly distilled under 0.1 torr below 120° in the flask 150 g of dehydrolinalol are charged onto the residual mass thus obtained, and the mixture is heated for 35 min at 160°. 5 recyclings are carried out in this way. The determination of the dehydrolinalol (silver nitrate method) and of the citral (oximation) gives the following results, over all the operations carried out; yield of citral 77% relative to the dehydrolinalol converted, degree of conversion 18%

Isomerisation experiment in a diluted medium. 20 g of dehydrolinalol. 1 g of cyclohexyl orthovanadate and 50 ml of paraffin oil are introduced, under an inert atmosphere, into a 250 ml flask equipped as above. The mixture is stirred and heated for 1 h at 125°, and the resulting dehydrolinalol/citral mixture is distilled in vacuo (0.1 torr) without exceeding 100° in the flask. 20 g of dehydrolinalol are charged onto the residual mass thus obtained and the mixture is heated for 1 h at 125°, 11 recyclings, involving a total of 239.3 g of dehydrolinalol, are carried out in this way. The chemical determinations of the citral formed and of the residual dehydrolinalol give, over all the operations, a yield of citral of 77% and a degree of conversion of the dehydrolinalol of 14%, representing, at this stage, a consumption of vanadium equivalent to 0.015 gram atom per molecule of citral formed

Acknowledgements—We would like to thank Mr. A. Pacoud, Director of the Fine Chemicals Division of Rhone-Poulenc Industries, for having provided us with the means for producing this publication. We would also like to thank Messrs. C. Grard, Y. Querou and C. Schneider, for their collaboration in this study, Messrs. L. Billet and R. Mottet of the Physical Department of the spectral determinations, Mr. R. Reverchon for analysis.

REFERENCES

- K. H. Meyer and K. Schuster Ber. 55, 819 (1922); H. Rupe and E. Kambli, Helv. Chim. Acta 9, 672 (1926); H. Rupe, W. Messner and E. Kambli, Helv. Chim. Acta 11, 449 (1928); H. Rupe and Fr. Kuenzy, Helv. Chim. Acta 14, 708 (1931).
- A. I. Zakharova, Zhur. Obsch. Khim. 15, 429 (1945).
- ³P. D. Landor and S. R. Landor, J. Chem. Soc. 1015 (1956).
- ⁴G. Saucy, R. Marbet, H. Lindlar and O. Isler, Helv. Chim. Acta. 42, 1945 (1959).
- M. V. Mavrov and V. P. Kucherov, Russ. Chem. Rev. 36, 233 (1967).
- S. Swaminathan and K. V. Narayannan, Chem. Rev. 71, 429 (1971)
- *E. A. Braude, Quart. Rev. 4, 407 (1950).
- K. Dimroth, Ber. 71, 1333 (1938), R. H. De Wolfe and W. G. Young, Chem. Rev. 56, 753 (1956), L. Ruzicka, Helv. Chim. acta 6, 486 (1923), I. N. Nazarov, Izvest, Akad. Nauk S.S.R. 10, 1267 (1957).
- *P. Chabardes and Y. Querou, Fr. Pat. 1,554,805 (28/11/1967), and Fr. Pat. of Addition 96,548 (17/12/1968) and 96,549 (17/12/1968).
- *P. Chabardes, C. Grard and C. Schneider, Fr. Pat. 1,599,581 (30/12/1968).
- ¹⁰W. C. Meuly, Am. Perfum. Cosmet. 85, 123(1970), Riechstoffe, Aromen, Körperpflegemittel 22, 191 (1972), Parf. Cosm. Sat. Fr. 2, 535 (1972), P. Z. Bedoukian, Am. Perfum. Cosmet. 86, 28 (1971).
- H. Pauling, Fr. Pat. 2,137,550 (Swiss priority 715/71); Fr. Pat. 2,272,971 (Swiss priority 1/3/74); N. C. Hindley and D. A. Andrews, Fr. Pat. 2,205,496 (British priority 2/11/72); N. C. Hindley and D. A. Andrews, Fr. Pat. 2,268,775 (British priority 26/4/74); G. L. Olson and G. Saucy, Fr. Pat. 2,212,329 (U.S. priority 2/11/72); G. L. Olson and G. Saucy, Fr. Pat. 2,268,796 (U.S. priority 26/4/74); Kuraray Co. Ltd, Japan. Pat. 5, 1048–608 (18/10/74); H. Pauling, Chimia 27, 383, (1973); G. L. Olson, K. D. Morgan and G. Saucy, Synthesis 25, (1976); G. L. Olson, H. C. Cheung, K. D. Morgan, R. Borer and G. Saucy, Helv. Chim. Acta 59, 567, (1976); H. Pauling, D. A. Andrews and N. C. Hindley, Helv. Chim. Acta 59, 1233, (1976).
- ¹²N. B. Erman, I. S. Aoultchenko, L. A. Kheifitz, V. G. Doulova, You. N. Novikov and M. E. Volpine, Zh. Org. Khim. 12, 921, (1976); Tetrahedron Letters 2981 (1976).
- Kuraray Co. I.td., Fr. Pat. 2,175,772 (Japanese priority 13/3/72),
 Japan. Pat. 5 0058-004 (26/9/73), German Pat. 2,516,698 (22/4/74).
- ¹⁴H. Schlossarczyck, W. Sieber, M. Hesse, H. J. Hansen and H. Schmid, Helv. Chim. Acta 56, 875, (1973).
- ¹⁵M. G. Voronkov, G. I. Seltschan, A. Lapsina and W. A. Pestunowitsch, Z. Chem. 8, 214 (1968) and references cited.
- ¹⁴M. Seefelder and J. Speck, Ger. Pat. 1,082,257 (19/3/59).
- ³⁷P. Chabardes, C. Grard and C. Schneider, Fr. Pat. 2,071,288 (28/12/69).
- H. Kwart and P. S. Francis, J. Am. Chem. Soc. 81, 2116 (1959).
 S. Siggia, Quantitative Organic Analysis, 3rd Edn, p. 388, Wiley, New York.